

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

The Possibility for Separation of Lanthanum by Solid-State Complexes with 2-Ethylhexyl Phosphoric Acids

M. Milanova^a; D. Todorovsky^a; M. Arnaudov^a; N. Minkova^a

^a FACULTY OF CHEMISTRY, UNIVERSITY OF SOFIA, SOFIA, BULGARIA

To cite this Article Milanova, M. , Todorovsky, D. , Arnaudov, M. and Minkova, N.(1995) 'The Possibility for Separation of Lanthanum by Solid-State Complexes with 2-Ethylhexyl Phosphoric Acids', *Separation Science and Technology*, 30: 5, 821 — 832

To link to this Article: DOI: 10.1080/01496399508013894

URL: <http://dx.doi.org/10.1080/01496399508013894>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

The Possibility for Separation of Lanthanum by Solid-State Complexes with 2-Ethylhexyl Phosphoric Acids

M. MILANOVA, D. TODOROVSKY, M. ARNAUDOV,
and N. MINKOVA

FACULTY OF CHEMISTRY
UNIVERSITY OF SOFIA
1, J. BOURCHIER AVENUE, SOFIA 1126, BULGARIA

ABSTRACT

The elemental composition, molecule, and crystal structure of precipitates obtained from an acetone solution of $\text{Ln}(\text{NO}_3)_3$ ($\text{Ln} = \text{Pr} + \text{Er}$ or $\text{La} + \text{Nd}$) with a mixture of bis- and mono-(2-ethylhexyl) phosphoric acids and their sodium salts were studied. In this study we found enrichment of the precipitate with the heavier lanthanide. The separation factor for the La-Nd couple is much greater than for the Er-Pr couple, and decreases with increasing rare-earth yield in the precipitate. We discuss the significant role of the stability of LnA_3 against HNO_3 , especially the formation of La complexes with mono-(2-ethylhexyl) phosphoric acid during enrichment.

INTRODUCTION

The synthesis and some of the properties of the solid-state complexes of the LnA_3 -type of rare-earth elements (RE, Ln) with bis-(2-ethylhexyl) phosphoric acid [HA , $\text{A} = (\text{C}_8\text{H}_{17}\text{O})_2\text{PO}_2^-$] were described in the literature (1–7). Some of them have been applied as catalysts (3) as well as in the purification of bis-(2-ethylhexyl) phosphoric acid from neutral organic impurities (3). Their ability to form liquid crystals was shown (8). Recently, the possibility of their use in Ln separation was pointed out (9, 10). Mixed-ligand complexes $\text{LnA}(\text{NO}_3)_2 \cdot n\text{H}_2\text{O}$ (11) and $\text{LnA}(\text{NO}_3\text{HA})_2$ (9) have also been obtained. We recently prepared and studied solid state

RE complexes with mono-(2-ethylhexyl) phosphoric acid of the type $\text{Ln}(\text{HA}')_3 \cdot n\text{H}_2\text{O}$, $\text{Ln}(\text{HA}')_2\text{NO}_3 \cdot 1.5\text{H}_2\text{O}$ and $\text{La}_2\text{A}'_3 \cdot n\text{H}_2\text{O}$ ($\text{A}' = \text{C}_8\text{H}_{17}\text{OPO}_3^-$) (12).

A few years ago it was found (13) that the precipitate formed by a reaction of commercially available bis-(2-ethylhexyl) phosphoric acid (solution in 0.01 M HCl) with LaCl_3 and NdCl_3 is enriched with neodymium. The distribution of RE between the solid and liquid phases obtained by the precipitation of LnA_3 from their solution in an octane-octanol- NH_3 mixture has been studied by Trifonov et al. (10). They found that the solution is enriched with the lighter RE. They proposed that the length of the LnA_3 polymer chains formed increases with the Ln atomic number and, accordingly, their solubility decreases. The same authors studied the separation of europium from other RE, precipitating LnA_3 from their HNO_3 solution (8). It has been established that the separation factor depends on the RE ionic radius.

In the above cited paper (12) we reported that praseodymium, neodymium, and erbium form a solid phase consisting of LnA_3 complexes when specific experimental conditions are applied [reaction of $\text{Ln}(\text{NO}_3)_3$ acetone solution with a partially neutralized commercial product bis-(2-ethylhexyl) phosphoric acid, the latter of which contains 62% HA and 37% $\text{H}_2\text{A}'$]. In the same conditions, lanthanum forms a solid phase only with $\text{H}_2\text{A}'$ of the type $\text{La}(\text{HA}')_3 \cdot n\text{H}_2\text{O}$ or $\text{La}(\text{HA}')_2\text{NO}_3 \cdot n\text{H}_2\text{O}$. The results show that the complexes studied can be used for separating lanthanum from other rare earths. Since the separation of lanthanum, which is the main component in cerium-free rare-earth mixtures, is an essential step in their processing, the search for easier lanthanum separation is of significant interest.

In the present paper, results are reported on the composition of the solid phase formed in the system $\text{Ln}(\text{NO}_3)_3$ - $\text{Ln}'(\text{NO}_3)_3$ -HA- $\text{H}_2\text{A}'$ - NaA - NaHA' - $(\text{CH}_3)_2\text{CO}$ - H_2O in coexistence of lanthanum and neodymium or praseodymium and erbium. The established separation of lanthanum from neodymium is quantitatively described.

EXPERIMENTAL

Materials

Puriss p.a. reagents were used to prepare the investigated compounds. The nitrates of RE were prepared from the corresponding oxides with an assay of more than 99.9%. Potentiometric titration shows the presence of 37% monoester in the bis-(2-ethylhexyl) phosphoric acid (Fluka) used.

Synthesis

The method used (12) is analogous to the one described in Ref. 3. Equal volumes of 0.5 M NaOH and a mixture of alkylphosphoric esters were mixed. The two phases were separated after prolonged agitation. Equal volumes of acetone solutions of the corresponding lanthanide nitrates (100 g anhydrous salts/dm³) were added to the organic phase. When water and acetone were added, a solid phase was obtained. The latter was filtered after 12 hours, washed with water and acetone, and dried in a dessicator above concentrated H₂SO₄ for 48 hours.

Analysis

The composition of the investigated solid phases was determined by common organic analysis methods (C, H, and N) and by IPC atomic emission spectroscopy (phosphorus and RE).

FT-IR spectra (400–4000 cm⁻¹) were recorded by Bomem Michelson-100 in Nujol. The spectral curve decomposition was done using the SPEC-TRA CALC program. Strongly overlapping bands were subjected to deconvolution prior to decomposition.

The diffractograms were made by a URD-6 powder diffractometer (Siemens) at CoK α , 30 mA, and 40 kV with a step width of 0.025 (in 2 Θ) and a counting time of 200 seconds per step.

RESULTS AND DISCUSSION

Elemental Composition

Table 1 contains data for the composition of precipitates obtained with different yields from initial solutions which differ in the ratio between the two REs.

The yield was regulated by the quantity of desalting agent that was added in the last stage of preparation of the complexes. The yield, along with the distribution coefficients and separation factors, are shown in Table 2. The Ln contents in equilibrium solutions were determined as differences between their experimentally found contents in the initial solution and those found in the precipitate.

Molecule Structure

The IR spectrum of the precipitate containing praseodymium and erbium does not show any essential differences from the spectra of the individual compounds PrA₃ and ErA₃. Because the spectra of these com-

TABLE I
Elemental Composition of the Precipitates Prepared from Solutions Containing Two Rare Earths

No.	Approximate formula ^a of the complexes	La/Ln' ^b mole ratio in initial solution	H		C		Ln		Ln'	
			Found	Calcd	Found	Calcd	Found	Calcd	Found	Calcd
1	Pr _{0.28} Eu _{0.72} A ₃	1: 0.84	8.74	8.88	50.20	50.20	2.9	3.4	9.4	9.5
2	0.0006 La(HA') ₃ + 0.9994 NdA ₃	1.99/0.00	9.09	9.27	52.46	52.00	0.009	0.008	14.2	13.0
3	0.034 La(HA') ₃ + 0.966 NdA ₃	1: 2.33	8.90	9.22	52.61	51.62	0.46	0.43	13.9	13.7
4	0.036 La(HA') ₃ + 0.964 NdA ₃	1: 1.00	9.19	9.21	52.70	51.60	0.49	0.46	13.8	13.6
5	0.014 La(HA') ₃ + 0.986 NdA ₃	1: 0.43	9.03	9.25	52.25	51.85	0.15	0.18	12.0	12.2

^a Better expressed with the formula $a\text{La}(\text{HA}')_3 \cdot 1.5\text{H}_2\text{O} + b\text{La}_x\text{Nd}_{1-x}\text{A}_3$.

^b Ln' = RE element with a higher atomic number.

TABLE 2
Lanthanum-Neodymium separation

No. ^a	Ln mass (<i>n</i>), mmol				Nd content (C), ^b mol%				Yield (<i>Y</i>), ^b (%)				Distribution coefficient (D)				Separation factor (<i>F</i>) ^b	
	Initial solution (IS)		Precipitate (P)		Solution		Precipitate		Nd		La		Nd		La			
	Nd	La	Nd	La	Initial (IS)	Equilibrium (ES)	(P)	(P)	Nd	La	Nd	La	Nd	La	Nd	La		
2	6.8663	0.0694	2.3502	0.0015	99.0	98.5		99.94	34.2	2.2	1.02	0.04			25			
3	4.8918	2.0965	1.7443	0.0598	70.0	60.7		96.7	35.6	2.8	1.59	0.08			19			
4	3.5316	3.5371	0.6981	0.0259	50.0	44.6		96.4	19.8	0.7	2.16	0.06			36			
5	2.1222	4.9518	1.9627	4.9496	30.0	28.4		98.6	7.5	0.04	3.47	0.019			182			

^a Numbers according to Table 1.

^b $C = 100n_{\text{Nd}}/(n_{\text{Nd}} + n_{\text{La}})$.

$Y = 100n_{\text{P}}/n_{\text{IS}}$.

$D = C_{\text{P}}/C_{\text{ES}}$.

$F = D_{\text{Nd}}/D_{\text{La}}$.

pounds are rather close (12), their similarity with the "mixture" precipitate is to be expected.

The spectra of the neodymium and lanthanum complexes obtained under the conditions described in the Experimental Section (but in the presence of one RE) are shown on Figs. 1 and 2. As mentioned in the conditions described for the synthesis of NdA_3 , $\text{La}(\text{HA}')_2\text{NO}_3 \cdot 1.5\text{H}_2\text{O}$ are formed. The spectra of the "mixture" precipitates (prepared in the same conditions but from solutions containing lanthanum and neodymium in different mole ratios, Table 2, Exps. 2-5) are rather close to the spectrum of NdA_3 . At the same time, two significant differences could be seen in the band intensities at 1027 and 1187 cm^{-1} . The intensive absorptions at 1030 and at 1150 cm^{-1} (Fig. 2) are characteristics for $\text{La}(\text{HA}')_2\text{NO}_3 \cdot 1.5\text{H}_2\text{O}$ (12) while the 1187 cm^{-1} band is the most intensive in the LaA_3 spectrum (Fig. 3). The relative increase of these bands in the spectra of the mixture precipitates in comparison with NdA_3 show that La^{3+} ions are included in NdA_3 , most probably in the form of $\text{La}(\text{HA}')_2\text{NO}_3 \cdot 1.5\text{H}_2\text{O}$

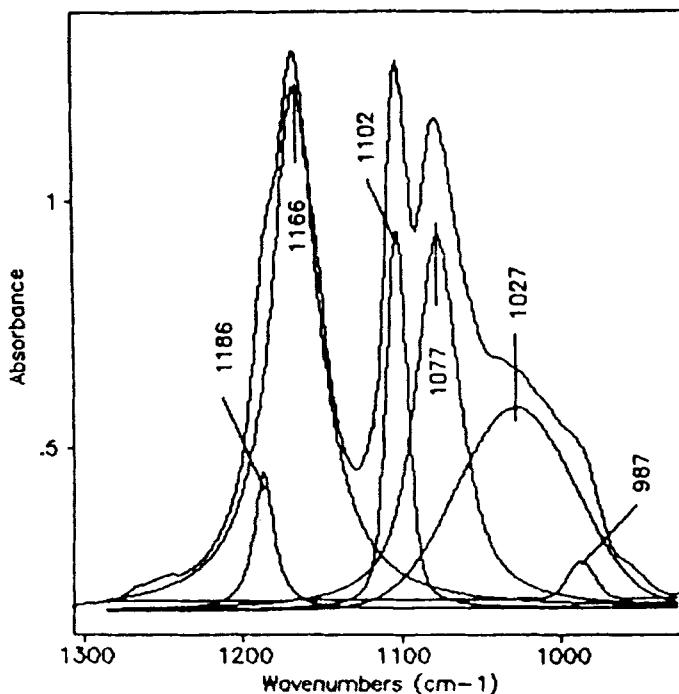


FIG. 1 IR spectra of NdA_3 .

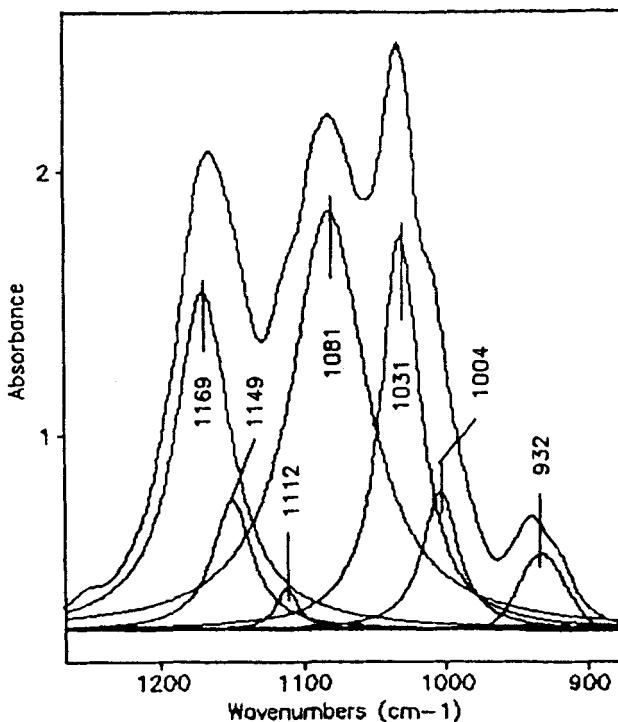


FIG. 2 IR spectra of $\text{La}(\text{HA}')_2\text{NO}_3 \cdot 1.5\text{H}_2\text{O}$.

and LaA_3 . This is confirmed by Fig. 4 which presents the spectrum of a "mixture" precipitate obtained at high yield with RE. It may be expected that LaA_3 will form a solid solution with NdA_3 . The presence of $\text{La}(\text{HA}')_2\text{NO}_3 \cdot 1.5\text{H}_2\text{O}$ is also confirmed by the band at $3500\text{--}2720\text{ cm}^{-1}$. These results are in full agreement with the crystal structure data.

Crystal Structure

The crystal structures of PrA_3 and ErA_3 are practically identical (both compounds crystallize in orthorombic symmetry) (14). This explains the observed identity between the diffractograms of the mixed Pr-Er-precipitate and those of the individual compounds (Fig. 5). Along with the IR data and elemental composition, the x-ray diffraction study shows that the mixed precipitate represents a solid solution of PrA_3 and ErA_3 or copolymer of the type $\text{Pr}_x\text{Er}_{1-x}\text{A}_3$. The reflexes between 2 and 28° were successfully indexed in orthorombic symmetry using the program POW-

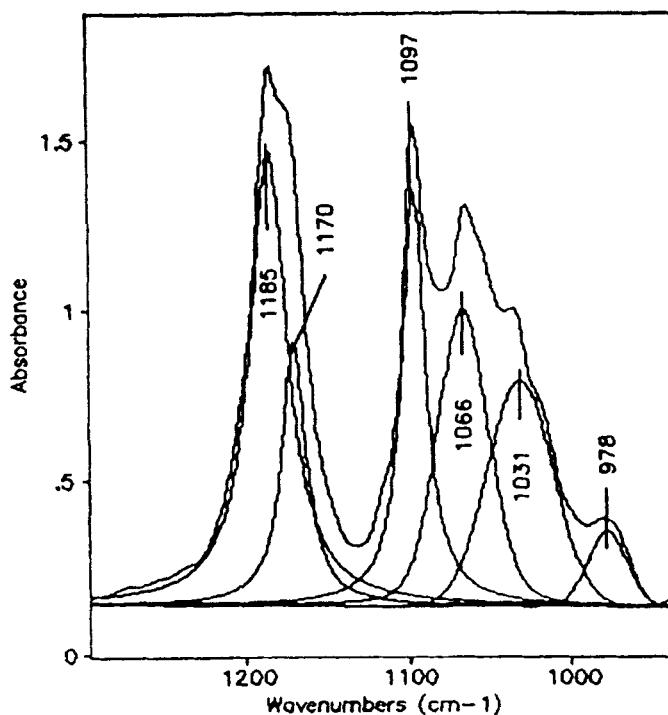


FIG. 3 IR spectra of LaA₃.

DER (Table 3). The cell parameters ($n10^{-10}$ m), $a = 19.24 \pm 0.10$, $b = 11.75 \pm 0.06$, and $c = 16.78 \pm 0.06$, are the same (within the error limit) as those of the individual compounds. Some small portion of the amorphous (nanocrystalline) phase could also be seen on the diffractogram. Its origin will be discussed below.

The diffractogram (Fig. 5.3, Table 3) of the precipitate containing >99.9 mol% Nd (relative to the sum La + Nd) (Exp. 2, Table 2, Fig. 4) is practically the same as that of NdA₃ (14). Amorphous or nanocrystallized regions are overlapped in the NdA₃ reflexes when the La content in the precipitate is increased (Exp. 4, Table 2, Fig. 5.4). They are contributed by the La(HA')₂NO₃·1.5H₂O (Fig. 5.5) present in the precipitate in these conditions. At the same time, the interlayer distances are shifted to greater values (Table 3), and the cell parameters and mol volume are slightly increased. These data suggest that the La-Nd precipitate probably consists of a mixture of La(HA')₂NO₃· n H₂O and La_yNd_{1-y}A₃.

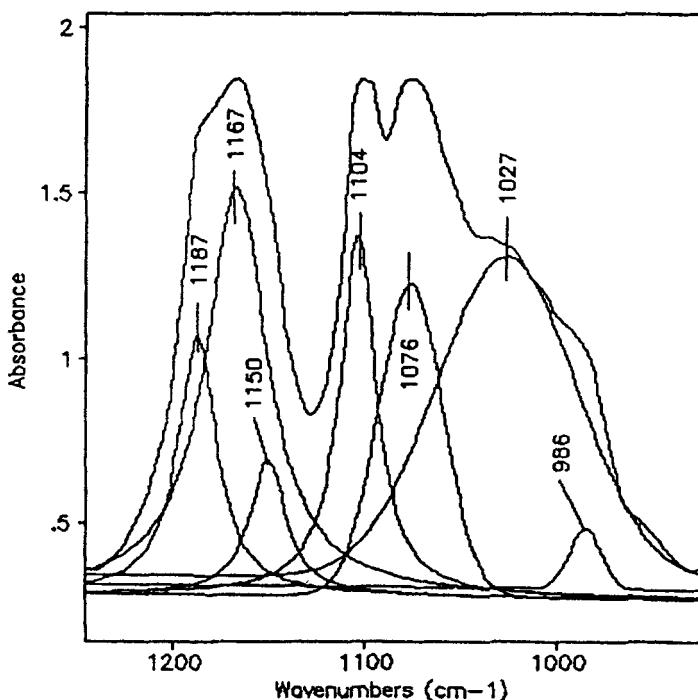


FIG. 4 IR spectra of La-Nd mixture precipitate.

The system we studied is analogous (in some aspects) to the one investigated in Ref. 10. Those authors dissolved previously prepared LnA_3 complexes in HNO_3 . Under those conditions, $\text{LnA}(\text{NO}_3\text{HA})_2$ complexes were formed. Precipitation of LnA_3 occurred when water was added.

By using HA (instead of solely NaA) as a reactant for LnA_3 preparation, we are also ensuring the presence of HNO_3 in the system. Accordingly, the behavior of PrA_3 and ErA_3 could be expected from the results (10). The enrichment (coefficient of enrichment 3.1) of the precipitate with erbium is of the expected order. It is hard to explain this effect with the formation of longer and less soluble polymer chains by the heavier RE, as was supposed (10). The only data for the degree of polymerization (7) show that for $(\text{PrA}_3)_n$, $n \approx 7000$, which is higher than for the rest of the $(\text{LnA}_3)_n$ investigated. It is hardly probable that ErA_3 (for which no data exist) forms longer chains. Indeed, when the complexes are precipitated from HNO_3 solution, the chain lengths could be rather different. For the time

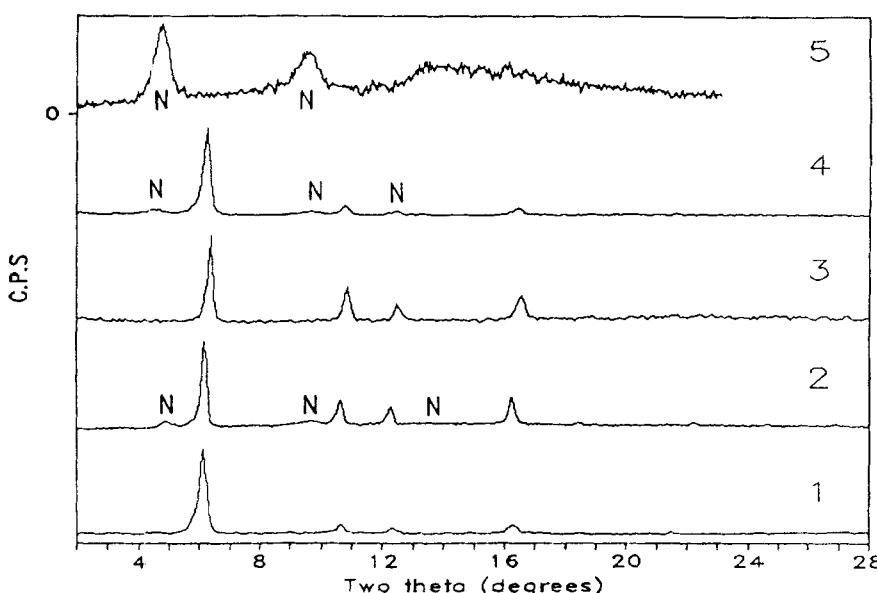


FIG. 5 Diffractograms of PrA_3 (1), $\text{Pr}_{0.28}\text{Er}_{0.72}\text{A}_3$ (2), $[\text{0.0006}\text{La}(\text{HA}')_3 + \text{0.9994}\text{NdA}_3]$ (3), $[\text{0.036}\text{La}(\text{HA}')_3 + \text{0.964}\text{NdA}_3]$ (4), and $\text{La}(\text{HA}')_2\text{NO}_3 \cdot 1.5\text{H}_2\text{O}$ (5); *N*-amorphous or nanocrystalline phase.

being, there is no experimental proof for such an assumption. It has been suggested (8) that structure factors play an important role in the separation of europium from other REs.

Along with these hypotheses, we assume that the observed enrichment is connected with the established fact (10) and confirmed by us that decreasing stability of the $\text{LnA}(\text{NO}_3\text{HA})_2$ complexes occurs with increasing lanthanide atomic number.

The separation factors for La-Nd (Table 2) are much higher than the ones reported for Eu-Ln(III) (10). In the system studied in the present paper, HNO_3 is produced in an amount more than sufficient for the complete destruction of the LaA_3 produced by the reaction $\text{LaA}_3 + 3\text{HNO}_3 \rightarrow \text{La}(\text{NO}_3)_3 + 3\text{HA}$. However, such a reaction takes place only with LaA_3 ; much more HNO_3 is needed for the analogous reaction with the other LnA_3 (10). In the system we studied, Nd^{3+} stays mainly in the form of $\text{NdA}(\text{NO}_3\text{HA})_2$.

The presence of $\text{H}_2\text{A}'$ and NaHA' in our system ensures the formation of $\text{Ln}(\text{HA}')_3 \cdot n\text{H}_2\text{O}$ [or $\text{Ln}(\text{HA}')_x(\text{NO}_3)_{3-x} \cdot n\text{H}_2\text{O}$] (12). As was experimentally proven in the same work, La complexes with mono-(2-eth-

TABLE 3
X-Ray Powder Diffraction Data

No.	2θ°	Interlayer distance (d), n10 ⁻¹⁰ m	d ⁻²			h	k	l	Relative intensity (I/I ₀), %
			Found	Calcd					
Pr _{0.28} Er _{0.72} A ₃									
1	6.03	17.0180	0.035	0.036	0	0	1		100
2	10.60	9.6904	0.0106	0.0108	0	0	1		30.0
3	12.20	8.4234	0.0141	0.0142	0	0	2		22.2
4	16.25	6.3334	0.0249	0.0250	2	0	2		33.3
5	18.45	5.5839	0.0321	0.0320	0	0	3		6.1
6	24.65	4.1934	0.0567	0.0568	3	2	1		1.9
La-Nd-Precipitate (Exp. 2, Table 2)									
1	6.36	16.1283	0.0038	0.0037	0	0	1		100
2	10.86	9.4582	0.0112	0.0112	0	1	0		44.5
3	12.53	8.2005	0.0149	0.0149	0	0	2		21.5
4	16.55	6.2189	0.0259	0.0259	2	0	2		37.3
La-Nd-Precipitate (Exp. 4, Table 2)									
1	6.25	16.4196	0.0037	0.0037	0	0	1		100
2	10.81	9.5062	0.0111	0.0111	0	1	0		11.3
3	12.42	8.2768	0.0146	0.0146	0	0	2		5.9
4	16.44	6.2614	0.0255	0.0255	2	0	2		7.6

ylhexyl) phosphoric acid are more stable against HNO₃ relative to the complexes of the same element with the diester (HA). At the same time, the complexes with (HA')⁻ ligands are more soluble in acetone-H₂O solution, which is due to the presence of OH (and NO₃⁻ in mixed ligand complexes) as well as to the formation of shorter polymer chains (12).

Therefore, when the desalting agent was added, the precipitation of NdA₃ started first. With an increase in the amount of this agent (i.e., increasing the RE yield in the precipitate), Ln(HA')_x(NO₃)_{3-x}·nH₂O also started to precipitate. Its presence in the precipitate is shown in the IR spectra and in the diffractograms. Due to the precipitation of La complexes with H₂A', the separation factor will obviously decrease as the yield increases. This effect is clearly expressed in Table 2. [Traces of the same type of complexes of praseodymium and/or erbium have been coprecipitated with LnA₃. They have caused amorphous regions in the relative diffractogram (Fig. 5.2)].

If H₂A' or NaHA' is not present in the system, the lanthanum will exist mainly in the form of La³⁺ and will be coprecipitated with NdA₃. The H₂A' present acts as a "masking" agent for La³⁺, binding it into complexes which are less coprecipitable with NdA₃, thus increasing the separation factor.

CONCLUSION

This study shows that the solid phase formed in the system $\text{HA}-\text{NaA}-\text{H}_2\text{A}'-\text{NaHA}'-\text{acetone}-\text{Ln}(\text{NO}_3)_3-\text{Ln}'(\text{NO}_3)_3-\text{H}_2\text{O}$ (with specific ratios of the components) is enriched with heavier lanthanide. This is probably due to the decreasing stability of LnA_3 against HNO_3 . The precipitate formed by the coexistence of $\text{Pr}(\text{NO}_3)_3$ and $\text{Er}(\text{NO}_3)_3$ represents a solid solution, most probably crystallizing in an orthorombic symmetry. Much higher separation factors (decreasing with an increase of the yield of lanthanides in the precipitate) are found for La-Nd . They are probably of the same order for the separation of lanthanum from other $\text{Ln}(\text{III})$. The higher separation of La is caused by the qualitatively different behavior of LaA_3 in HNO_3 -containing system in comparison with other LnA_3 . The $\text{H}_2\text{A}'$ present plays the role of a "masking" agent for La^{3+} , forming a relatively soluble $\text{La}(\text{HA}')_x(\text{NO}_3)_{3-x}\cdot n\text{H}_2\text{O}$, and thus decreasing La^{3+} coprecipitation with NdA_3 .

The relatively high separation factors obtained, which are accompanied with satisfactory yield, are encouraging for continuing studies of the system because of its potential use in the separation of lanthanides.

REFERENCES

1. T. Harada, M. Smutz, and R. G. Bautista, in *Proc. ISEC, April 19-23, 1971, The Hague*, Soc. Chem. Ind., London, 1971.
2. V. I. Spyryakov, P. G. Krutikov, V. M. Barinov, and A. S. Solovkin, *Radiokhimiya*, 14, 4 (1972).
3. N. N. Bogushevich, S. S. Bubnova, V. A. Vasil'ev, and V. A. Kormer, *Avt. svid. SSSR* 759 522 (1980).
4. Wu Jinguang, Gao Hongcheng, Xu Guangxian (K. H. Hsu), and Chen Dian, *K'o Hsueh Tung Pao*, 26, 794 (1981).
5. Gao Hongcheng, Wu Jinguang, Chen Dian, Yue Zhai, and Xu Guangxian (K. H. Hsu), *J. Chin. Rare Earth Soc.*, 4, 71 (1986).
6. Yu. I. Trifonov, E. K. Legin, and D. N. Suglobov, *Radiokhimiya*, #4, 422 (1985).
7. T. Harada, M. Smutz, and R. Bautista, *J. Chem. Eng. Data*, 17, 202 (1972).
8. Yu. I. Trifonov, E. K. Legin, and D. N. Suglobov, *Radiokhimiya* #2, 70 (1991).
9. Yu. I. Trifonov, E. K. Legin, and D. N. Suglobov, *Ibid.*, #3, 143 (1992).
10. Yu. I. Trifonov, E. K. Legin, and D. N. Suglobov, *Ibid.*, #3, 150 (1992).
11. Yu. I. Trifonov, E. K. Legin, and D. N. Suglobov, *Ibid.*, #6, 750 (1990).
12. M. Arnaudov, M. Milanova, and D. Todorovsky, In Press.
13. T. Horozov, M. Milanova, and A. Nikolov, *Avt. svid. Bulgaria* 86 850 (1990).
14. L. Bozukov, M. Milanova, and D. Todorovsky, In Press.

Received by editor September 13, 1993

First revision received June 8, 1994

Second revision received August 2, 1994